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We study the effect of an elastic field in an order-disorder phase transition described by the
dynamics corresponding to a model C system. The elastic field is coupled to both the concentration
and the order parameter. By assuming that the elastic field relaxes very fast, we express it in terms
of the conserved variable and the order parameter. We concentrate our study on the long-range
Eshelby interaction that arises due to the difference of shear moduli in the ordered and disordered
phases. This elastic interaction modifies dramatically the spinodal decomposition, by changing the
morphology of domains and slowing their growth (which in the absence of an elastic field varies
as tt/ 3). Changes in morphology are more dramatic when there are competing effects between the
wetting regime of model C and the elastic energy. The elastic misfits create an energy barrier of
soft phase around the hard phase precipitates. This energy barrier leads the system to very sluggish

growth and to an eventual frozen metastable state.

PACS number(s): 61.50.Ks, 64.75.+g, 81.30.—t, 81.40.Jj

I. INTRODUCTION

During phase separation of alloys, elastic fields origi-
nate from the elastic misfit or the difference in the lattice
constant of the phases [1]. These long-range fields can
drastically influence the domain morphology. In particu-
lar, the elastic anisotropy of crystals or the anisotropy
brought about by external stresses gives rise to mod-
ulated structures with nearly periodic patterns in late-
stage spinodal decomposition [2]. It has been observed
experimentally that the growth of modulated structures
is characterized by an exponent that depends on the
composition of the alloy. Also, for alloys with large lat-
tice misfits, the coarsening rate becomes extremely slow,
and in many cases the precipitates become stable against
coarsening and growth stops [3].

Ardell et al. [2] studied experimentally a cuboidal mod-
ulated structure; Eshelby in an Appendix to this paper
calculated a pairwise interaction among spherical precip-
itates when the elastic moduli are different (Eshelby’s
interaction). Khachaturyan presented a study of struc-
tural transitions for nonconserved order parameters [1].
Cahn studied the effects of elastic fields on phase tran-
sitions with conserved order parameter [4]. Kawasaki
and Enomoto [5] investigated the Eshelby interaction for
spherical domains in Ostwald ripening at small volume
fractions. Johnson and Voorhees [6] studied the elasti-
cally induced concentration changes in two-phase systems
and found that elastic misfit strains affect the equilibrium
solute distribution.

Recently, Onuki and Nishimori [7] have presented a
Ginzburg-Landau approach to analyze the elastic effects
in phase-separating alloys in a model B system. In their
work, the authors consider the so-called coherent case in
which precipitates have lattice constants that are differ-
ent from that of the matrix and the lattice planes are
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continuous through the two-phase region. They assume
that the elastic strain is a subsidiary tensor variable cou-
pled to a conserved order parameter, the concentration.
By further assuming that the elastic field relaxes very fast
with respect to the concentration, they obtained an effec-
tive energy to describe the interactions among the con-
centration fluctuations when the elastic moduli weakly
depend on the concentration.

Model B contains the essential physics for some sim-
ple systems, but generally, many alloys undergo order-
disorder transitions in which the nonconserved order pa-
rameter related to the symmetry of the alloy is coupled
to the conserved variable (the concentration). For such
systems, the description given by model B is inadequate
since we need two coupled differential equations, as de-
scribed in the simplest case by model C.

For a model A system, a quench from the disor-
dered phase into the ordered phase induces a symmetry-
breaking transition and the nonconserved order parame-
ter reflects the degree of local ordering in the system. For
a model B system, the conserved order parameter is pro-
portional to a density or concentration, and reflects the
extent of the phase separation in the system. Typically,
an initial mixed state is quenched inside the coexistence
region, where it separates into two or more phases. In
this case, all the phases involved have the same symme-
try, including the initial mixed one. For both model A
and model B, the disordered state is a stable minimum
of the bulk free energy density before the quench, and an
unstable maximum after the quench. In contrast to this
situation, a quench for a model C system from the dis-
ordered state into the coexistence region of a symmetry-
breaking, first-order phase transition shows three minima
at the final temperature: the minimum corresponding to
the disordered phase coexists with the degenerate min-
ima corresponding to the two ordered states of the non-
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conserved order parameter.

Order-disorder transitions are common in binary al-
loys. The order-disorder transitions in the Fe-rich Fe-Al
alloys were first reported in 1932 by Bradley and Jay [8].
Since that time, much effort has been put into under-
standing order-disorder transitions in general. Allen and
Cahn [9] have studied the coherent and incoherent equi-
libria in iron-rich iron-aluminum alloys, as well as the
mechanisms of phase transformations within the misci-
bility gap of these alloys. The phase diagram has a dis-
orderered phase, a, and two ordered phases, FeAl and
FezAl. The transitions a — FeAl and FeAl — FejzAl are
second-order transitions. Here we will look at the part of
the phase diagram that involves the a phase (disordered
bee) and the FeAl phase (ordered bec). The o — FeAl
second-order transition line is usually known as the “A
-line” and ends in a symmetrical tricritical point; below
this point the transition is first order. Allen and Cahn
showed the importance of elastic effects in these alloys,
and the existence of an equilibrium incoherent phase dia-
gram and a coherent metastable phase diagram (see Fig.
1).

Recently, we have studied the spinodal decomposition
in an order-disorder phase transition described by model
C [10]. In this work we showed how the wetting proper-
ties of the disordered phase can alter the morphology of
the domains after the quench. The purpose of the present
paper is to study the effect of an elastic field in order-
disorder phase transitions. We study a model C system
and couple the elastic field to both the concentration and
the order parameter. We choose the parameters of the
free energy such that in absence of elastic fields the dis-
ordered phase completely wets the ordered phase. In our
system, the elastic field cannot distinguish between the
two ordered states but can certainly distinguish between
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FIG. 1. Sketch of the temperature-concentration phase di-
agram. The solid lines correspond to the incoherent stable
state and the dashed lines to the coherent metastable state.
If this sketch were to represent part of the phase diagram
of an Fe-rich Fe-Al alloy, the disordered phase would corre-
spond to the a phase (disordered bec) and the ordered phase
to FeAl (ordered bec). These phases are separated by a line
of second-order transitions (the A line) which ends at the mis-
cibility gap between the same phases. The point where the
)-transition line meets the two first-order coexistence lines is
a tricritical point. The elastic effects in the coherent phase
diagram have lowered this tricritical point.
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the degenerate ordered minima and the disordered mini-
mum. This means that in the coarse-grained free energy
that describes the system, the coupling term between the
elastic field and the nonconserved order parameter must
be an even function of the order parameter. In Sec. II
we present the model for constant elastic moduli and for
elastic moduli that vary with the concentration and the
order parameter. In Sec. III we describe our simulations
and present the results. In Sec. IV we give the conclu-
sions of our study. We have also included an Appendix
where we derive the interface equations.

II. MODEL
A. Constant elastic moduli

In this section we introduce the coarse-grained
Ginzburg-Landau free energy functional that corre-
sponds to a model C system and study the effect of cou-
pling an elastic field. We call ¢ the conserved variable
and ¥ the symmetry related scalar order parameter. The

: ; Bujy - .
elastic strain p;; = —;—(%% + 32L) is a subsidiary tensor
, :

variable coupled to both ¢ and ¥. We assume the co-
herent condition at the interface, i.e., the lattice planes
are continuous through the interface. In this subsection
we assume that the system is isotropic and that the elas-
tic moduli are constants. The condition of mechanical
equilibrium allows us to express the elastic field in terms
of the conserved variable and the order parameter. The
only contribution of the isotropic elastic terms with con-
stant elastic moduli is to renormalize the coefficients of
the free energy, or equivalently, to displace the coexis-
tence and spinodal lines in the phase diagram. Thus we
can obtain a dimensionless expression of the free energy
where all these effects have been absorbed. In the next
subsection we generalize our treatment to the case where
the elastic coefficients depend on ¢ and .
The coarse-grained Ginzburg-Landau free energy is

l2
Figosoul = [ dr| 3 (@)

2 ~
+2 (Vo) + f(¢,¢,u>} M

The bulk free energy density f(¢,vy,u) is
1

2x;‘¢2 +yoy? — Ag

Fo,,m) = 5r4% +upt + 0y +

+epdV - u+ euY?V -u+ fulp), ()

where V - u is the trace of the strain tensor y and €4 and
€y are constants that, respectively, couple V - u to the
conserved variable and the order parameter. fe; is the
isotropic elastic energy for a d-dimensional system given
by

~ i 2
Fat) = 39w+ 3 (s = %9 -0)
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Here kg and pq are the bulk and shear elastic moduli
[11]. We assume for simplicity that the parameters r,
U, U, Y, Xny €4 €y, Ko and uf depend only on the tem-
perature T'. Considerations of stability require v, xn, kg
and pg all greater than zero. A is the chemical potential
associated with the alloy.

If we set pu;; = 0 we are left with the model used by
several authors [12] to describe tricritical systems in al-
loys and in superfluid *He-*He mixtures (where the order
parameter is complex). Minimizing the free energy den-
sity (without elastic fields) with respect to ¢ with ¢ fixed
gives ¢ = xn(A — v9?) and substitution in Eq. (2) with
u = 0 gives E,.;c(dz) = %7"'1/;2 +aypt oyt + %anz, where
F=7r+2Ayx, and @ = u — %’yzx,.. Thus a mean-field
analysis shows that there is a line of second-order phase
transitions for # = 0 and @ > 0. For negative i, there
is a line of first-order transitions at # = %2/(2v) with a
tricritical point at # = 0,4 = 0. On the disordered side
of the first-order line, ¥2 = 0 and ¢ = x,A, while on the
ordered side of the first-order line ¥2 = 92 = |u|/(2v)
and @, = xnA — YXn|E|/(2v).

The mean-field approximation to the free energy is ob-
tained by minimizing the integrand with respect to the
components of the displacement vector u, ¢ and ¢ for
fixed T and A. The stress is defined as

OF
= 4
U'J 3#;';" ( )
0ij = (€9 + €g¥® + KoV - u)dy;
+2pp (uu — %V U) (5)

The mechanical equilibrium condition requires that

Ooy;
Z Oz; =0 (6)

which translates into

[n{, + (1 - 3) u&] VV -u+ €4V + €, Vp?

+uoViu = 0. (7)

The solution of this equation is

v. u_TrA——(e¢¢+e.;,¢) (8)

where we have assumed a constant external strain A;;,
¢ = ¢ — ¢o with @9 as the concentration before the
quench, and k}, = k{ +2p5(1—1/d). In absence of exter-
nal strain, this equation coincides with that obtained by
Allen and Cahn [9] (they only consider the compression-
dilation term, i.e., uo = 0 and kj, = kg) and its interpre-
tation is the following. The lattice constant a changes
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both as a function of ¢ and . If we consider a along the
z direction, we can write a = ao(1 + du./0z) and the
relative change in volume of the system after the quench
is

—Vou= -t (3 2
—-‘-/——V u= k;0(€¢¢+€¢1/) ). (9)

If we substitute the expression for V -u in Eq. (7), we
find

8u,- €9 32W¢ €y 32W¢
T _q,. -2 -2 10
a.’l!j A” kfo 8z,~6:c,- k;o axjam,' ’ ( )
with
— 1 -
VWs=¢-ho=9 or Ws=38,
and
1
VZW..I, = ¢2 or W¢ = -6—21,[)2. (11)

This expresses the strain tensor in terms of the order
parameters ¢ and . If we substitute Eq. (10) with
A;; = 0in Eq. (2) we find that the contribution of the
elastic terms renormalizes the coefficients of the free en-
ergy density, which now reads

Flow) = grvt+ (u- 5 D -
0

€5
2k},
This has the same form as the energy for the model C

system without elastic fields, except that some parame-
ters have been renormalized:

1
+(1 - k—;owe«s)wz —Ad+ (12)

€
—y— ¥
T
2
€
-1 _ -1 ¢
Xn1 = Xn — Zk;Oa (13)

1
YL =79 k—;of‘l,6¢.

These parameters reduce to the ones of the simple
model C system when the coupling constants €4 and €y
go to zero. Now we can repeat the analysis done for the
incoherent tricritical system and find

/ —
f1=r+ ZA’Yanl =7r+ 2AXn(M)7

kio — Xn€,
N 1, €
Uy =U— V1 Xnl — o7,
2 2k,
1 kjpxn ( 5¢€¢) 6111
=u— = - , 14)
2 (kyo Xn5¢) ki 2"7{0 (

¢ = Xn1A — 1Xn19?

Xn
Ko

= m — (vkto — €~bf¢)¢2] .
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For 4; > 0, there is a line of second-order phase tran-
sitions at ¥; = 0. For 47 < 0, there is a line of first-order
transitions at ¥; = 1;%/(2v) with a coherent tricritical
point at ¥7 = 0,4; = 0. The value of ¥ on the dis-
ordered side of the first-order line is 2 = 0 as before,
and on the ordered side is 92 = 92 = |41|/(2v) while
the values of the concentration are ¢,; = xn1A and
ds1 = Xn1A — Y1Xn1|U1|/(2v). A linear analysis shows
the new spinodal lines:

r
=
Y1 (15)
~ 2
__r Uy Xn17Y1
Z 2m + 3vv |:u1 + 2 }

¢, is the spinodal line near the disordered side of
the coexistence line and ¢, is that near the ordered
side. If fidgiab(¢) is the adiabatic approximation of
f(¢,%) (obtained by replacing v as a function of ¢) then
02 fodiab(9)/04? has a jump discontinuity at ¢ = ¢; go-
ing from positive for ¢ > ¢; to negative for ¢ < ¢,
while it goes continuously to zero at ¢ = ¢,. We de-
fine the temperature coefficient of fyy = 8% fadiab(9)/9¢?
along the A curve as fyg1 = 0f34/0T [9]. Then one can
compute the temperature difference between the inco-
herent and coherent tricritical point as 7" — T<oh =

1 (fincoh __ fcoh .
foor \J 00 ¢

Figure 1 shows the phase diagram for the coherent and
incoherent case. If the elastic field is isotropic and the
elastic coefficients are constants, the only effect of cou-
pling an elastic field to the order parameter and concen-
tration is just to switch the positions of the lines of the
phase diagram, but this effect can be absorbed by renor-
malizing the coefficients of the free energy, such that the
functional form of the coherent free energy is the same
as that of the incoherent one. In particular, it is always
possible to rescale the relevant quantities to obtain di-
mensionless equations.

We want to study a quench into the unstable region of
the phase diagram, where coexistence fixes the value of
A: A = Ag for 7y = ilz/(2v). It is possible to rescale
the units of energy, concentration, and order parameter.
We introduce the dimensionless order parameter y and
the dimensionless concentration c:

U g 2

Y =¥

_ ||
¢~anA0+’Yan17U_’(c— 1), (16)

and the dimensionless elastic constants, €, €y, Ko, po and
kio = Ko + 2p0(1 — l/d):

lal*

491 Xn1v »
lia*
v €y = 6¢,
(17)

ldl‘a ’
guz 0T o
|1Z1|3 7
8‘02 Ho = Hg
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With these transformations, the free energy density
becomes

f(c,y,y) = Ao{yz(l — yz)2 +alc+y®— 1)2} + By
+A0{ [ec(c—co) + &3]V - u

+m[€c(c—cn)+eyy2]2+fel(p)}, (18)

~ i3

where Ay = J:—;L— is a multiplicative constant with di-
2 2

mensions of energy, By = (—eg% - X—"lzéﬂ is an irrelevant

2
additive constant, a = :’lLu’fﬁ is a positive dimensionless
constant that measures the coupling between ¢ and y,

and f.; is the dimensionless elastic energy:

1 8, 2
fulb) = 3r0(¥ 0?40 Y (1 = 249 w) (19
i,
Dropping the additive constant By and scaling the
free energy by Ao, we define the dimensionless energy
fle,y,p) as

f(cvyvﬂ) = fl(cﬂy) + f2(cay7/»‘) )
filen) =121 - )" +ale+ v ~1)°
(20)

fz(C,y, l") [GC(C— CO) + Eyyz]z

= Wm
+[ec(c —¢o) + eyyz]V ‘u+ fa(p)-

f1(c,y) corresponds to a free energy with three coexist-
ing minima and without coupled elastic fields [10]. Min-
imizing this energy with respect to c, at fixed y, gives
¢ =1-1y?% In the (c,y) plane, the disordered minimum
is at (1,0), while the degenerate ordered minima are at
(0,£1). Under the assumption of constant elastic mod-
uli that we have used so far, and in absence of external
strain, the elastic field satisfies

I

1
V-u=——Jefc—co) + eyyz],
kio

Ou; €. 0*W, &y 82Wy
6:5,- km szaa;,- k[o Bz,-ax,-’

(21)
VW, = ¢ — co,
VZWy =y

If we replace these expressions in f2(c,y,p), we find
that it vanishes identically [13], since the elastic effects
have been eliminated through the process of rescaling.

B. Concentration and order parameter dependent
elastic moduli

We will generalize the energy so that the elastic coeffi-
cients depend on both c and y. We will also deal with a
more general case and include an anisotropic cubic term
and external strains. We will define generalized elastic
moduli M, K, and B such that for an isotropic system,
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these moduli are given by

M =y,
K=n=/\+§p,, (22)
B =0.

Here k and p are the bulk and shear elastic moduli
[11] in their dimensionless form. For the cubic system,
the generalized elastic moduli become

M = Cyq,
2
K=Cp2+ 2044, (23)
B = C11 - Clg - 2044.
Here the C;;’s are the stiffness coefficients, and the
anisotropy is defined as { = B/Clyq.
The simplest functional form we can write for the elas-
tic moduli is
K =ko+ kc(c - Co) + kyyz,
M = mg + me(c — co) + myyz, (24)
B =bg +bc(c—co) + byyz.

If we set all the coefficients to zero, except for mo and
ko, we recover the energy density analyzed previously.
The moduli take different values in phases with different
concentrations. This concentration and order parame-
ter dependence turns out to be a key factor determin-
ing the morphology of domains. The free energy density
fle,y,p) is given by Eq. (21) with the elastic free en-
ergy density expressed in terms of the generalized elastic
moduli:

2
fal) = 3KV 07+ MY (s - %9 -u)
5

1
i
The elastic strain tensor is
oij = [ec(c — co) + ,¥* + KV - u+ Buy;] 65

+2M (uu - %V : u) . (26)

We want to express the elastic field in terms of the
concentration and order parameter, so that the last two
terms in fa(c,y, 1), Eq. (21), get replaced by an effective
energy that describes the interactions between the fluctu-
ations of the concentration and order parameter [7]. This
free energy will be computed to first order in the elastic
coefficients k., mq, and b,, where @« = y or a = c. We
call A the part of the functional derivative of the energy
due to the elastic field, i.e.,

el = (2y)a [lka(v * ‘-1)2 + fav -u
ma Z au, a'u,
Bz, i

2
+§ba Z uii] ’ (27)

2
5,, AV u)
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where (2y)Y = 2y and (2y)° = 1. We see that, except for
the second term, AZ; is already first order in the elastic
moduli, so we need to compute 3—',‘; only to zeroth or-
der, and then we need a correction to first order for the
term €,V - u. For simplicity we will assume that ¢ and
y are homogeneous within the boundaries of the region
of interest, such that ¢ = §y = 0 along the boundary.
We will also assume an external stress at the boundary,
producing an affine deformation (8—‘“) A;j.

To start, we apply the condition "of equilibrium, Eq.
(4), and only keep the terms to zeroth order. To this or-
der of approximation we can write the trace of the strain
tensor for the isotropic system as

_ 2
Vou=Tra_ (6= ) +&’]
Ao + 2p0

(28)

To solve for the cubic system, we go into Fourier space
and with the definition

o f(?
=3 G )
we get
ik -ug = — X(f‘)[fcc:. + €y (¥?)k] (30)

[1+(C%, + C)x(k)]’

where (y?)r is a shorthand notation, (y%)r =
J 49 yx Yx—q. A linear approximation in the anisotropy
gives

[ec(c —co) + eyyz]
V-u=Tr4 -
" (CP2 +2C2y)
L EC8eele = ) + )
(CP2 +2C2,)?
£C2, 1

B (CP: +2C2,)? vz

><ZV2

i£j

V2 [CC(C CO) + €y ] (31)

To zeroth order, the strain tensor is

€ W, €y W,
km 6zj6:c, k[o 31:_162:,

Ou; €c
—— = Ay —
Oz ;

(32)

where kjo = Mg + 2u0 for the isotropic system, and kjo =
C?, + 2C3, for the cubic system.
We can define a traceless external strain tensor [7]
2
S,-,- = A,-_-,‘ + Aji - E&,‘jTl‘A (33)
and with it, we construct the tensor Vij, which is first
order in the elastic moduli:
VS = maS;; b°‘

ij

Sg,-&,g . (34)
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Now we introduce Eq. (32) back into Eq. (7) and com-
pute the corrections to first order in V-u. In doing so, we
neglect the corrections to ko originating from the coeffi-

cients k,. We also neglect the terms that renormalize the
J

@

2]

el a €a 2 1
NN P - [ e
29) . —[ec(c — co) + €y¥?] P [ (€aVi5 +eViF)
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coefficients €q, [€a — €o + (ko + ba/d)TrA], since these
corrections vanish in absence of external strain, and in
most cases are negligible. After some algebra, we get an
expression made up of eight terms:

*wW,
Bmax] +;ea eV oz 32:1]

IR - ) sl - )
Zfa bV Z ax,ax] [(mete = co) + myy?) (e afg;i - %ch( co) + €y 08; - %ifyyz)]

‘bZ,Z'[ (vz ZVzV?

The constant Ag is a function of the external strain,
and is zero when the external stress is zero. The integra-
tion of A% with respect to the order parameter and to
the concentration gives rise to different interactions.

1. Effective local interaction

The first two terms of Eq. (35) represent the contribu-
tion of the constant isotropic elastic moduli. Integrating,
we get

c 2

féff = A§(c— co) + A¥y? co) + eyyz} .

(36)

1
— _Zk_[EC(

If we introduce this expression back in Eq. (21), we see
that we are left with an effective local interaction energy
of the form

A§(c = co) + A¥y* + (1 - ¢*)°
+alc+y® —1)% (37)

fers =

In absence of external stress A§ = 0, and we are left
with the effective energy found in the preceding section.
The effective local interaction absorbs all the contribu-
tions that come from the constant isotropic elastic mod-
uli. All the remaining contributions in the effective en-
ergy originate either from the varying part of the elastic
moduli or from the anisotropy, and they are long range.

2. Long-range dipolar interaction

Since the correction due to by in V7 is very small, we
neglect it. The third term in Eq. (35) gives the A%
due to the external stress. In general, it produces an
anisotropic deformation. The integration of these terms
gives

1 dc 8y?\ 1 dc oy?
fa=ga ZS («aa * vae;) 73 (e +mva:,.)-

(38)

A precipitate under the field produced by the exter-

—(c— co)) +ey(V2 ZV2V2W yzﬂ

lc2 V2282[(

0?W, 62 )] . (35)

) ) (0, O

nal strain tends to deform in particular directions given
by the relation among the components of the tensor S.
This tensor also determines the form of the interaction
between different precipitates; for instance, for two el-
lipsoidal precipitates A and B, of d-dimensional volumes
V4, Vg, a distance r4 g apart, this interaction is propor-
tional to V, Vg FaB S ap)

TAB
3. Long-range Eshelby interaction

The fourth and fifth terms in Eq. (35) give rise to a
long-range interaction due to the difference of shear mod-
uli in the ordered and disordered phases. The integration
of these two terms gives

fE klz [mc(c

x Z[G-’*(az,az, B %yz)

co) + myyz]

Eshelby was the first to calculate a pairwise interaction
between spherical precipitates where the elastic moduli
are different [2]. This interaction is valid as long as
the precipitates remain spherical. Onuki and Nishimori
have shown the relevance of shape deformations from
sphericity in the presence of elastic misfits: the harder
domains deform from sphericity to cancel elastic fields
produced by other harder domains and to become elas-
tically isotropic, while the softer regions are elastically
anisotropic (uniaxially deformed). They have also found
that the domain growth is dramatically slowed down in
the presence of this interaction, when the elastic field is
coupled to a concentration with model B dynamics. For
volume fractions of the soft phase of 50% or less, they
have found that the modulus inhomogeneity drives the
system into metastable glassy states after the asymmet-
ric elastic deformations.
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4. Long-range cubic interaction

The symmetry properties of the surface energy in cu-
bic crystals are, for small gradients, isotropic and propor-
tional to the square of the gradient terms in the energy.
All the anisotropies in the early stages of spinodal de-
composition come exclusively from the elastic anisotropy
[9]. The last three terms of Eq. (35) arise due to the cu-
bic anisotropy. The sixth term in by creates an effective
energy of the form

£C, 2
feus = E [ViVj(ecWe + €, Wy)]
i#]

2(CY, +2CY,)* |-

—[ec(c — co) + €y3?] 2] . (40)

After a quench, spinodal decomposition is triggered
by fluctuations in the concentration and order parame-
ter along the softest directions. The domains start to
grow on the habit planes, which are perpendicular to the
softest directions. It can be shown that for £ < 0, the
fluctuations first become unstable along the (100) direc-
tions for d = 3 ((10) for d = 2); while for £ > 0, they
first become unstable along the (111) directions for d = 3
({(11) for d = 2). In the presence of external stresses, a
competition arises between the inherent cubic anisotropy
and the external anisotropy due to the applied stress.

The last two terms with b, contribute a correction to
f cub?

(1) —_ 1 b _ b 2
fow = g+ 20gye ele o) + 0]
W,  8°W.\?
X ;(Ey—&?— + Gc—a-—x?——) . (41)
In cases where the anisotropy ¢ = (CY — C?, —

2C%,)/CY, is a small quantity, the corrections to it are
still smaller, so one could neglect f(ll.

cu.
C. Langevin equations

For our numerical study, we only consider effective lo-
cal interactions (that simply renormalize the free energy)
and long-range Eshelby interactions; i.e., we assume no
external stress and no anisotropy in the system (and we
set to zero both the anisotropy £ and the external strain
S). The study of the long-range Eshelby interaction is
particularly interesting for the model C system, since this
system allows us to choose either the disordered phase or
the ordered phase to be the hard phase, a feature that
is not present in model B. We now introduce the cor-
responding dynamical equations assuming that the dy-
namical processes related to the elastic displacement are
much faster than the processes related to the changes in
the concentration and order parameter. We use the adi-
abatic approximation for the elastic field such that for
a given concentration and order parameter field at time
t, the displacement vector u(r) is such that it minimizes
the total free energy. The evolution of the concentration

and order parameter is then described by the Langevin
equations:

—Z—i’ _ —Fy [Bf(‘g;l,#) _ lzvzy] + Eya (42)
% v [a__—f Cn) z:vzc] te,  (49)

where f(c,y,p) is the dimensionless energy obtained
in the preceding section, consisting of two terms:
f(e,y, ) = fess + fE. As a first approach, we neglect all
other hydrodynamical modes. The new mobilities and
the new coefficients of the square gradients are given in
terms of the original mobilities Iy, and 'y and the origi-
nal coefficients 2 and I3

|ai |?

= T
Ty 4v ¥
_ &l
2(mxn1)? ¥
(44)
2 = dv 5
v lujllz ¥

2 _ 2(’71Xn1)2 2
i = ——F15.
| |
Here £, and &, are stochastic variables verifying the
fluctuation-dissipation relation:

(&(r, )&y (r', 1)) = 27Ty 8(r — r')é(t - ¢') ,
(45)
(Ec(r, t)éc(x',t)) = —27T.V35(r — r')8(t - t'),

where 7 is the dimensionless thermal emergy: 7 =

8v?
kBTmsu
III. SIMULATIONS
A. Numerical integration
2 e
Using the notation b;; = ey(% — %‘-yz) +

2 5'.. .
éc(%; (= Co)) and Q = Zi,j bfj, the previous

Langevin equations become

?}I_ =T afeff(c,y)
ot v dy

- lzvzy + 2ym,Q
1 2
+4yeyﬁ Z aTjEz,-{mc(c — ¢co)
1,3
+myy2]bi;‘}] , (46)

Qf _ 2 [ Ofess(c,y) 22
i r.v ( Pe IVec+mQ

32
+2€c tXJ: W{[mc(c - Co)

+myy®]bi;}. (47)
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TABLE 1. Parameters used in the simulation.

Run co €y €c my me
A 1/3 1 0 0.22 0.0
B 2/3 1 0 0.22 0.0
C 1/3 0 1 0.0 0.22
D 2/3 0 1 0.0 0.33

In these equations the coefficients ¢, are redefined so that
€x = 7%, and we have neglected noise, whose importance
we will ‘discuss later.

To solve for the operator vl; , we found that it was con-
venient and more precise to use pseudospectral methods.
It was found necessary to use an “isotropic” form of the
Laplacian (which couples nearest and next-nearest neigh-
bor cells) and of its representation in Fourier space Ag:
Ag = [cos(kgdx)cos(kydy) + cos(kydz) + cos(kydy) —
3]/dz?, where we used dz = dy. Notice that in Fourier
space, W, = —¢% and W, = ——i%;;i, with the notation
(¥*)x = [ dd yx Yx—q -

We performed quenches from an initially disordered
state to a state inside the classical spinodal. For these
quenches, we used two values of the concentration: ei-
ther co = 1/3 or co = 2/3 [14]. For all these quenches,
we set ', Ty, l:, and [2? to unity and o = 4. The
Langevin equations were solved numerically using Eu-
ler’s Method on a two-dimensional grid with a finite dif-
ference scheme. Periodic boundary conditions were used
throughout. The spatial and temporal mesh sizes were
chosen to avoid possible spurious unphysical solutions re-
sulting from the subharmonic bifurcation. The spatial
mesh size was taken to be Az = 1.2. The complicated
form of the energy imposes constraints on the time mesh
size, which was chosen as At = 0.01 or At = 0.03, accord-
ing to the particular set of parameters. This simulation
takes about 370 CPU hours in a Hewlett-Packard 700
for an average run with At = 0.03 up to ¢ = 10 000.
Our initial distribution of y’s was specified by a random
uniform distribution in the range (—0.1,0.1), while the
initial distribution of ¢’s was specified by a similar ran-
dom distribution in the range (co — 0.1,co + 0.1).

Table I summarizes the elastic field parameters used.
For each set of parameters, we carried out four runs on
a 128x128 square grid and one run on a 256x256 square
grid. For each set we computed the nonequilibrium pair
correlation function for both the conserved variable c
and the nonconserved order parameter y, as well as their
corresponding circular averages. We also computed the
typical length scale R.(t) associated with domains of c.
This was defined as the smallest value of r for which
C.(r,t) = 0 at time t; as well as Ry(t), the typical length
scale associated with domains of the variable y and de-
fined as the value of r for which Cy(r,t) = 1/2 at time
t.

B. Results

Here we present the results of our simulation. Fig-
ures 2(a) and 2(b) show the time evolution for a sim-
ple model C system for ¢ = 1/3 (or normalized con-
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(a)

FIG. 2. Typical configurations for a model C system
quenched into the order-disorder coexistence region, and with
parameters chosen such that the disordered phase (black)
forms a wetting layer that wraps the ordered domains with
opposite sign (white or gray). The times shown in the picture
correspond to 7 = 150, 7 = 450, and 7 = 1500, from top to
bottom. (a) shows a quench with ¢¢ = 1/3 and (b) shows a
quench with ¢o = 2/3.

centration x = —1/3) and ¢o = 2/3 (x = +1/3) [14].
The energy is asymmetric with respect to x [10], so that
x = —1/3 gives a convoluted morphology of percolating
domains while x = +1/3 gives isolated circular clusters
of ordered phase. For these configurations, there is a
macroscopic wetting layer of disordered phase (indicated
by black color) between two ordered phases of opposite
sign (indicated by white and gray colors).

We want to see how these morphologies are altered
when we couple an elastic field to the concentration or
order parameter. Notice that the shear modulus for
the ordered phase is pora = —mcco + my while for
the disordered phase it is pg4;, = mc(1 — co) so that
Ap = pord — Pdis = My — Me. If my > me, then Ap >0
and the ordered phase is the hard phase. Conversely, if
me > my, Ap < 0 and the disordered phase is the hard
phase. As stated in Table I, we will couple a field to the
concentration (€., m. # 0, €, = m, = 0) or to the order
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parameter (€y,my # 0, €. = m. = 0), for both co = 1/3
and ¢p = 2/3.

Figures 3(a), 3(b), 4(a), and 4(b) show the resulting
morphology for runs A, B, C, and D. In all these con-
figurations, the hard phase always forms the precipitate
(i-e., the individual domains) while the soft phase always
forms the matrix (i.e., the percolating background). In
runs A and B, my = 0.22 and m. = 0.0, which means
that the ordered phase forms the precipitate (whose do-
mains alternate in sign). Thus, due to the elastic forces,
the majority phase ordered domains in run A (co = 1/3)
form isolated clusters (wrapped by the minority phase)
and no longer percolate through the system, as it hap-
pens in the model C system without elastic forces [Fig.
2(a)]. For run B (co = 2/3), the elastic forces do not alter
much the morphology from that of the model C system,
where the ordered domains (which are minority phase for
this concentration) already form isolated clusters.

In runs C and D [Figs. 4(a) and 4(b)], m. = 0.22 and
.m. = 0.33, respectively, while m, = 0.0 for both. This
means that the disordered phase forms the precipitate.
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FIG. 3. Configurations where the ordered phase is the hard
phase. (a) shows run A (co = 1/3) and (b) shows run B
(co = 2/3). Times correspond to 7 = 300, 1500, and 6000,
from top to bottom.

(a) )

FIG. 4. Configurations where the disordered phase is the
hard phase. (a) shows run C (co = 1/3) and (b) shows run
D (co = 2/3). Times correspond to 7 = 300, 1500, and 6000,
from top to bottom.

Interesting competing effects arise: on the one hand, due
to the nature of the model C quench, the disordered phase
tends to form the macroscopic wetting layer between the
ordered phases; on the other, due to the presence of the
elastic forces, the disordered phase tends to form isolated
domains, such that part of the order-disorder interfaces
[ (y=+1)-(y = 0) and (y = —1)—(y = 0) ] disappears to
form order-order interfaces [ (y = +1)—-(y = —1) ]. Note
that for run C at early times, surface forces dominate
over elastic forces and a wetting layer is formed. But
as time evolves and the domains become larger, elastic
forces compete and thin this layer. This is graphic evi-
dence that surface forces and elastic forces have different
scaling behavior with respect to changes in the length
scale. A similar competition arises in run D although,
in this case, the elastic forces become dominant at much
earlier times [compare the early-time pictures in Figs.
2(b) and 4(b)]. In run D, the length of the order-order
interfaces is less than that in run C, so the wetting layer
is absorbed faster.

These competing effects can also happen in the inverse
regime. A quench in the “drying” regime of model C
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produces isolated clusters of the disordered phase, which
no longer wet the interface between the ordered phases.
Such a quench shows both types of interface: order-
disorder and order-order. The addition of an elastic in-
teraction where the ordered phase is the hard phase will
again bring competing effects; the elastic energy favors a
configuration where the disordered soft phase percolates
and wraps the hard domains.

The elastic forces slow down the growth of the do-
mains. This effect manifests itself at late times when
the domains are large. Thus the slowing down will occur
sooner in runs A and D, where the the majority phase
forms the precipitate than in runs B and C, where the mi-
nority phase forms the precipitate. Particularly, for some
runs, the domains of the ordered phase may become very
large (see, for example, run C). In this case, our results
for R,(t) lack some self-averaging and could be affected
by finite-size effects [qualitatively the behavior of R,(t)
is similar to that of R.(t)]. On the other hand, R.(t)
presents much better self-averaging and smaller size ef-
fects, although runs A and D are more vulnerable to
finite-size effects than runs B and C. To study these ef-
fects, we chose run A and did two runs on a system of
N = 256, eight runs for N = 128, and 32 runs for N = 64.
Within error bars, we found agreement in the curves of
R.(t) and Ry(t).

Figure 5 shows the time evolution of R.(t). In general,
the effective growth exponent n decreases with time. For
instance, for late times n = 0.14 for run A. We believe
that these effective exponents correspond to a transient
stage and we expect the domain growth to stop for very
late times. This expectation contrasts with our result for
run C, where we measure an effective exponent n = 0.29
for the latest time n (7 = 12 000). This could be due
to the following. (i) Lack of statistics. A growth ex-
ponent obtained with a single run must be considered
only indicative. (ii) Small amount of hard phase. In a
study with model B with elastic forces, Onuki and Nishi-
mori [7] showed that the effect of elastic forces in do-
main growth depends on concentration. In particular,
they found that domain growth was dramatically slowed
down (and it tended to stop) for concentrations of the
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FIG. 5. Time dependence of the characteristic domain
length R.(t) (as computed from the correlation function) for
the different runs.
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hard phase higher than 0.5. For lower concentrations
they did not see the domains stop. For runs C and B,
the volume fraction of the hard phase is less than 0.5.
(iii) Reduction of the wetting layer. In spite of a possible
lack of statistics, this run presents some peculiarities ab-
sent in the rest of the runs. It is the only case in which
the morphology of the hard domains is changing in time,
due to the competition between surface and elastic forces.
This could affect growth: the concentration is leaving the
original wetting layer to join the spherical domains. Yet,
all these domains are still connected through threads of
this wetting layer. In this case diffusion parallel to the
wetting layer could be very important. Once the wetting
layer has completely disappeared, the dominant mech-
anism is diffusion perpendicular to the interface of the
domain; however, for the latest time of our simulation a
thin wetting layer is still present.

In spite of our inconclusive results for run C, we believe
that growth will finally stop and the system go into a
glassy state, due to both the presence of conservation law
and the elastic forces. In order to clarify this possibility
we have followed two different approaches, (i) we have
plotted the part of the fuctional derivative of the energy
solely due to the elastic field, and (ii) we have studied
the interface equations of motion, in order to separate
the contributions from diffusion and from elastic forces.

Figure 6 shows the functional derivative of the elas-
tic energy with respect to the concentration for the runs
shown before. [For runs A and B, the elastic energy does
not explicitly depend on c(r). Assuming that near equi-
librium ¢ = 1 — y2, we obtained the derivative with re-
spect to ¢ from the derivative with respect to y.] The
white color corresponds to high positive derivative, the
black color corresponds to negative derivative, and the

FIG. 6. Functional derivative of the elastic energy with re-
spect to the concentration, g = §F;/dc. The figures corre-
spond to 7 = 6000, i.e., the last configurations shown in Figs.
3 and 4. The color scale is the following: white, g > 0.2; gray,
0 < g <0.2; black, g < 0.
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gray color to intermediate positive values. The gray and
white regions repel particles belonging to the black re-
gions, so that it will cost energy if a particle in a black
domain is to move to another black domain. The only
way a domain can grow is by diffusion of particles, due to
the conservation law associated with the concentration.
But this diffusion process will be hindered by these elastic
barriers. The existence of the barriers is always expected:
the inhomogeneity of the system creates elastic misfits
which translate into large deformations at the boundary
of a hard phase precipitate. A hard phase deformation is
energetically more expensive than a soft phase deforma-
tion, so these deformations occur in the soft phase im-
mediately surrounding the hard phase precipitate. The
surface energy of the domains decays like 1/R, but the
elastic energy does not, as dimensional analysis shows.
At very early times the domain growth is dominated by
the surface energy, but at very late times the elastic en-
ergy takes over. There is a crossover radius Rg, which is
roughly given by Rg ~ o10|(my—mc)[eyy®+ec(c—co)]| 71,
where y? and c take their corresponding saturation value
inside the domains. For R > Rpg the elastic energy be-
comes dominant and leads to a metastable glassy state.

In the Appendix we derive the interface equation of
motion for the concentration following the method of
Kawasaki and Ohta [15] [Eq. (A30)]:

/ G(x(a),r(a')) v(a') da’

= 0d-1)[ g - 77a7] - A9BuI (). (19)

Here a is the (d —1)-dimensional coordinate along the in-
terface of a domain; G(r(a),r(a’)) is the Green’s function
evaluated at two points a and a’ not necessarily belong-
ing to the same domain; v(a') is the velocity normal to
the surface; o is the order-disorder surface tension; R, is
the mean critical domain length; Tla) is the mean cur-
vature of the surface; Ae = ¢, —€.; Ap = py — pe; D
is the region comprised by the precipitate domains, and
Ip(r(a)) is given by

In(r(@) = 3 /D dr’ L dr" [2M(x(a), ') Mis (', 2")

+Mij(x(a), ') My (x(a), ") (49)
with
2 ! L.
Mij(r,r') = % - %J(r — ). (50)
In Eq. (48), A(r(a)) = o(d — 1)/r(a)

+(Ae€)?|Ap|Ip(r(a)) is the chemical potential at r(a);
the second term is the contribution from elasticity. Thus
Eq. (48) simply means that domains with small chemical
potential at the surface grow at the expense of those with
higher chemical potential at the surface.

We show in the Appendix that the predictions given
by these equations for a model B system consisting of
a small volume fraction of hard phase spherical precipi-
tates are contrary to our corresponding simulations. It
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could be argued that the discrepancies between the theo-
retical predictions and the simulations are due to the as-
sumption of spherical shapes, since the interaction among
domains induces distortions from the spherical shape [7].
However, this effect is negligible in the limit of dilute sys-
tems and cannot be strong enough to dominate the other
terms in the equation. We argue that these discrepancies
are due to the existence of the elastic energy barriers,
which are not considered in the theoretical formulation.
The equations compare the chemical potential at the sur-
face of two domains and neglect the important fact that
when a particle goes from one domain to the other, it
must necessarily pass through a region with even higher
chemical potential.

In our opinion, Eq. (48) should be evaluated not at the
interface but at a surface where the chemical potential is
maximum. The new equation should read

/ G(2(a),x(a)) v(a') da’

= h(t) — Aairs(2(a)) — (Ae)*|AplIp(2(a)),

(51)

where z(a) defines the new surface, h(t) accounts for
global conservation of particles, Ag;ss(2z(a)) is the diffu-
sive chemical potential in absence of elastic energy, and
the last term is the elastic contribution.

We expect that the addition of noise to the simulation
would allow the system to reach its absolute minimum,
but the time the system will take to reach this minimum
will increase exponentially with the height of the elastic
barrier, so that the growth would be logarithmically slow
for very long times.

IV. CONCLUSIONS

In this paper we have studied the effect of an elastic
field in an order-disorder phase transition described by
the dynamics corresponding to a model C system. The
elastic field was coupled to both the concentration and
the order parameter. By assuming that the elastic field
relaxes very fast, and using the condition of mechanical
equilibrium, we expressed it in terms of the conserved
variable and the order parameter. We concentrated our
study on the long-range Eshelby interaction that arises
due to the difference of shear moduli in the ordered and
disordered phases. We showed how this elastic interac-
tion modifies dramatically the spinodal decomposition.
By choosing the coefficients of the concentration and or-
der parameter in the shear modulus, we were able to se-
lect the phase that forms the hard precipitate. Changes
in morphology are more dramatic when there are com-
peting effects between the wetting regime of the model
C and the elastic energy. Thus, in the regime where the
disordered phase wets the interface between the ordered
domains, ordered phase precipitates form individual clus-
ters but still keep this wetting property. However, disor-
dered phase precipitates tend to form isolated relatively
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spherical domains that no longer wet the order-order in-
terface. Conversely, in the drying regime, the disordered
phase tends to form isolated nonwetting clusters in ab-
sence of elastic fields but if it becomes the soft phase due
to the presence of elastic strains, then it tends to perco-
late and wrap the hard ordered precipitates. The elastic
field produced by elastic misfits alters not only the result-
ing morphology but also leads the system to very sluggish
growth and to an eventual frozen metastable state.
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APPENDIX

The important features of the late-stage dynamics are
described by the motion of the interfaces. Here we first
derive the interface equations of motion following the
method of Kawasaki and Ohta [15] for a model B system.
We show how the equations obtained for this system do
not give the correct physics and we suggest how to mod-
ify them. Later we generalize this treatment for a model
C system.

We start with the Eshelby interaction written for a
model B system:

o = —gcCZ[( 2W _ é:’llvgw)]z ‘

—_- Al
Bm,-c'):ci ( )

1,3
with
VW =¢

and g. = e2m. > 0. This choice of g. simply states
that if ¢ < O the energy will be minimized by setting
the shear strain to zero, while if ¢ > 0 the energy will
be minimized by maximizing the shear strain. In other
words, the hard phase precipitate occurs for ¢ < 0 and
the soft phase background has ¢ > 0.

We introduce the Green function G(r,r’):

V23G(r,r') = §(r — 1) (A2)
and the tensor M;;:
2 ' y
My(r,r') = FCr.r) _Siisn . (A3)

a:l:j B:c,- d

The tensor M;; is translational invariant over all the
space  and verifies Y, M;; = 0. With this definition,
we can write
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Flc] = /dr [f(c) + —21-(Vc)2]

—9e Z/dr dr’ drv” M;;(r,r') M;;(r',r")
]
xc(r) e(r') c(r”). (A4)

For the interface description we use a curvilinear co-
ordinate system such that u is the coordinate normal to
the interface, v = 0 on the interface, and a is the (d —1)-
dimensional coordinate along the interface. We define
the normal to the interface as n = Vu; the curvature,
k = V -7 and the velocity, v = du/dt. We solve the
equations in the sharp interface limit, when the profile
of the interface is approximated as a step function. We
assume that the precipitates correspond to ¢ = —C, and
the background to ¢ = +C,. The surface tension is o.
Let (u) represent the step function such that the profile
is given by c(u) = C¢[20(u) — 1]. The derivatives of ¢ are
given by Ve = (AC.)é(u) 1 and ¢ = (AC.)d(u) v.

The normal coordinate u can be written as u = r —
r(a,t),where r(a,t) describes the radial distance of the
element a of the interface from the center of mass of
the domain, and v = —#(a,t). In the sharp interface
limit, the first part of the energy can be reduced to the
drumhead Hamiltonian:

1
/dr [f(c) n 5(vc)z] = cr/da. (A5)
We start with the equation of motion
de(r,t) 20F(c)
L — 7 t A6
s (46)
and define
PE) = -+ [er) & ér)d (A7)
(¢) 5 r) g3 cr)dr
such that the equation of motion becomes
§F(c) 6P(¢) 1
R ﬁé’(l’»t% (A8)
We can define a new quantity,
F(c,t) = F(c) + /c(r,t) h(r,t) dr (A9)
such that
§F 6F
= A10
éc dc +h ( )

where h(r,t) is a field that accounts for the indeterminacy
in the inverse Laplace operator and satisfies V2h(r,t) =
0. For periodic boundary conditions, it can be shown
that h is only a function of ¢ and the conservation law
imposes the further condition h(t) > 0 [15]. In the sharp
wall approximation, F(c) becomes
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F(c) = a/da + h(t) /c(u) dr
—ch/dr dr' dr" M;;(r,r’) M;;(x',r")

xc(u) c(u') c(u") (A11)

and
— (ACe)z li ! !
p=-{2 /da da’ v(a) G(r(a),r(d')) v(@'). (A12)

If there is a small displacement of the interface at a,
dn(a), the corresponding change in the concentration is

- dc(r) _ S&(r) _
dc(r) = (AC.)é(u(r)) én(a) such that 5—"((5% = Sola) =

(AC.)d(u(r)). The equation of motion becomes

§F &P ’ y
Fna) T Gu(@) ~ (A / G(r(a),r) £(r',2) dr’
(A13)

We call Q all the space and D the precipitate domains,
such that Q — D is the region occupied by the matrix.
The elastic part of Eq. (A13) is

6Fa _ r r" r(a),r
i) = (AC)gcz/d [ a5 [225(x(@), %)

XM,'J' (l‘l, l‘”) + M,'j (r(a), l'l)

x Mi; (r(a),r” ] e(w)e(u"). (A14)
We design with T' any of the integrals in the double in-
tegral above. Thus the double integral running over all
space can be represented as ToTq and it can be decom-
posed in three terms:

TaTq =TpTp + Ta_pTa-p — 2TpTa-p - (A15)

The first term above can be written as

o —LTr(ﬂ), [r—ra| < Ra
i1 = | EATe(u) (L20ghm0) | ry = fr—ral > R

After some algebra, and assuming that two-body inter-
actions are much stronger than higher-order interactions,
Eq. (A16) can be written as

R + 2RIR?
ID(z)—— 7 ;( |l'z—l'|2d )

(A21)

Because the shear strain is zero inside the precipitate, the
“self-term,” i.e., the term corresponding to the elastic en-
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TpTp(r(a)) =Z/Ddr'/Ddr" [2M,-,-(r(a.),r')
x Mi;(r',r") + Mij(r(a),r')
X My (x(a), ")

and similarly for the other two terms. We assume trans-
lational invariance of the tensor M;; over the space €2
and take into account that Zi M;; = 0. This means that
TpTq-p = —TpTp and Tq_pTa-p = TpTp + 7, where
~ is an irrelevant constant related to the integration of
the M;;’s over all space [Eq. (A17) below means that the
Laplacian is acting on TqTq ]. Thus Eq. (A15) reduces
to TaTq = 4TpTp. For simplicity, we call TpTp = Ip.
The solution to Eq. (A13) is

(A16)

(AC.)? / G(r(a),r(a')) v(a') da’

= —r(a)o + (AC.)h(t) — 4(AC.)C3g.Ip(r(a)) ,

(A17)

where we have set the noise to zero. With the convention
we have used, k(a) > 0 when the center of curvature
is in the domain [in particular, for a spherical domain
of radius R, K = (d — 1)/R and the critical radius is

= (d—1)0/(ACe)h(t) ].

The velocity equation can then be rewritten as

d-1)r1 1

G ,r(a’ " da' = 0'(— L
[ 6@z v(e) do’ = T [ - ]
—(ACe)gcIp(r(a)) , (A18)

where R, is interpreted as an average critical size and
1/r(a) as a mean curvature.

This equation can be computed for spherical precipi-
tates. Spherical precipitates have the property that the
shear strain is zero inside them. Using Eq. (32) we write

1 W 5
i — =0.:Tr(p) = — — ).
For a spherical precipitate centered at A
(A20)

—
ergy evaluated inside the domain, and which is indepen-
dent of the coordinates of precipitates, vanishes. Thus
we are left only with the interaction term among precip-
itates. In particular, assume two three-dimensional(3D)
spherical precipitates, A and B. Equation (A18) can be
written as

RBRgzz[i_L_g&R 3 (RS + 2R, )]
TAB R. Ry 3 4B
(A22)

RAR +
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where r4p = |r4 —rp| and we have made (AC.) = 2 and
o = 4. There is another equation with the indices A and
B exchanged. We can assume sharp profiles so that all
the concentration is inside the droplets. The conservation
law requires

. R
RaRA (1 - TA‘;

where

__1__[L_ 1
(Ra+ Rp) | Ra

C(Ra,Rp,T4B) = —

Assume Ry > Rp. Equation (A24) implies that A will
grow and B will shrink at a greater rate than that of
Lifshitz and Slyozov. These are the results obtained by
Kawasaki and Ohta in their statistical theory of Ostwald
ripening with elastic field interactions. In their study
they conclude that if the precipitates are hard, growth
accelerates and if the precipitates are soft (i.e., g. < 0),
growth slows down. However, the assumption of soft pre-
cipitates is not good since the soft phase always deforms
and wraps the hard domains. These equations are in
strong contradiction with our simulations. We have sim-
ulated two precipitates of different radii with model B
dynamics. Our simulations indicate that, in spite of hav-
ing different radii, growth does not accelerate; quite the
contrary, it finally stops. The above equations, however,
clearly predict that the bigger domain will grow at the
expense of the smaller one. It could be argued that devi-
ations of the spherical shape could produce a nonvanish-
ing self-term (since shear strain would be nonzero inside
the precipitate) in the interface equations and thus ac-
count for the slow down. However, in our simulations
we have put the two spherical precipitates at certain dis-
tance from each other and the deviations from the cir-
cular shape are completely negligible, i.e., the approxi-
mation of spherical precipitates is good, but still growth
stops. We believe Eq. (A18) should be evaluated not at
the interface but at a surface where the chemical poten-
tial is maximum.

We can generalize these equations for a model C sys-
tem. Since the concentration is conserved, we expect it to
be the slow variable governing the late-stage dynamics. If
the precipitate is the ordered phase, i.e., m; = 0, the elas-
tic energy affects the concentration indirectly, through

the order parameter.
The Eshelby interaction
s 2
o)
(A26)

W

2
8.’1:]' a.’t,'

VW = ec(c—co) + eyy2

fB = [mc(c — co) + myy®] Y

%3

with

can be rewritten, for the late stages, solely in terms of the
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—) = (Ra — RB)C(R4,RB,TaB) ,

2
39

R4R4 + R3Rp = 0. (A23)

The velocity equation for the precipitate A can be re-
written as

(A24)

Rp(R% + R%)(R% + RaRp + R%)

> 0.
6
TAB

(A25)

f

concentration, using the equilibrium condition c+y*—1 =
0. By defining Ae = ¢, — €. and Ap = py — pe, We can
rewrite W as

W = (&g — €cco)r?/(2d) — V7 3(Ae)c
and

2w,
Oz;0x;

BW &
2 VW = —(ey — €.
ailtja(l:i d (Gy € )[

%

d Cc

(A27)

where V2W, = c. Thus the energy can be written as

fe = (my — meco)(Ae)?(1 — 1/d)c? + fg,
(A28)
W, 8ii
e = _(AE)Z(A“)CZ [az,-ami B ch}

fg contains all the late-stage elastic effects that will mod-
ify the equation of velocity for c.

Thus we can write the velocity equation (A18) with
(ACe) =1 as

/G(r(a),r(a')) v(a') da’ = o(d 1) ﬁlg - ;(la—)}
~@anip(x(@)
(A29)

where as before R, is interpreted as an average critical
size and % as the mean curvature of the domain, and
where 0 = 010 = 0_1,0. Since the ordered domains
form the hard phase, Ay > 0 (in our particular case
Ap =my).

The case where the hard precipitate is the disordered
phase is more delicate since there are competing effects
between the tendency of the disordered phase to form
the wetting layer along the ordered domains and the ten-
dency to form circular domains due to the elastic forces.
Particularly, in the late stage, when the disordered do-
mains are already independent clusters, part of their in-
terfaces are in contact with one sign of the ordered phase,
and part with the other sign. Since 010 = 0_1,0 and
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¢ = 1 — y? this distinction in signs may not be as crucial
for the hard disordered domain and one could proceed as
before, at least as a first approximation.

In this case, the sharp wall approximation for the
concentration gives ¢ = 6(—u), Ve = —6é(u)n, and
¢ = —d(u) v. For a small displacement of the interface at
a, 67n(a), the corresponding change in the concentration is
dc(r) = —6(u(r)) dn(a). This means that the elastic part
of the chemical potential becomes +(A€)?(Ap)Ip(r(a)),
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but in this case Ay < 0 (in particular, Ay = —m.), and
so we can write the resulting equation of velocity for both
cases as

[ 6x(@),x(@)) v(@) da’ = o(d = 1)z - ]

(A0 AuIIp (r(a)).
(A30)
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FIG. 2. Typical configurations for a model C system
quenched into the order-disorder coexistence region, and with
parameters chosen such that the disordered phase (black)
forms a wetting layer that wraps the ordered domains with
opposite sign (white or gray). The times shown in the picture
correspond to 7 = 150, 7 = 450, and 7 = 1500, from top to
bottom. (a) shows a quench with ¢o = 1/3 and (b) shows a
quench with ¢o = 2/3.



FIG. 3. Configurations where the ordered phase is the hard
phase. (a) shows run A (co = 1/3) and (b) shows run B
(co = 2/3). Times correspond to 7 = 300, 1500, and 6000,
from top to bottom.



(a) (b)

FIG. 4. Configurations where the disordered phase is the
hard phase. (a) shows run C (co = 1/3) and (b) shows run
D (co = 2/3). Times correspond to 7 = 300, 1500, and 6000,
from top to bottom.



FIG. 6. Functional derivative of the elastic energy with re-
spect to the concentration, g = §Fei/dc. The figures corre-
spond to T = 6000, i.e., the last configurations shown in Figs.
3 and 4. The color scale is the following: white, g > 0.2; gray,
0 < g <0.2; black, g < 0.



